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Abstract
Piezoresistance properties of quasicrystals due to both phonon and phason
stresses are investigated. The classical formulae of the piezoresistance effect
in crystals are generalized to the case of quasicrystals. The number of
independent components of the piezoresistivity tensor and their matrix forms
are determined for three-dimensional icosahedral quasicrystals and all two-
dimensional quasicrystals with fivefold, eightfold, tenfold and twelvefold
symmetries. Our results show that the piezoresistance effect may be related
only to phonon stress in the case of dodecagonal quasicrystals or to both phonon
and phason stresses in the other case.

1. Introduction

Since the discovery of quasicrystals (QCs) extensive theoretical and experimental studies
have been carried out on their structure, stability and elasticity, and have brought about
fruitful results [1, 2]. Recently, the literature devoted to other physical properties of QCs
has been rapidly growing [3]. One of the outstanding physical properties of QCs is their
anomalous resistance property. The resistivity of several QCs is remarkably large, the values
of which are larger than those observed in some systems on the insulating side of a metal–
insulator transition [4]. In highly resistive and highly ordered QCs the resistance increases
with decreasing temperature [5] or with improved order [6], which is a semiconductor-like or
semimetallic behaviour. On the other hand, the piezoresistance effect is an important one which
consists in the variation of the electrical resistance of a material under the action of mechanical
stresses (or strains). The piezoresistance effect is found in many substances, including
metals [7] and semiconductors [8]. And the piezoresistance effect is more remarkable in
semiconductors than other materials,which can give important direct experimental information
about the structure of the energy bands of semiconductors and allows the use of some
semiconducting materials for the manufacture of highly sensitive strain gauges which transform
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mechanical strains (stresses) into electrical quantities. In elastic properties the most particular
feature that distinguishes QCs from ordinary crystals is that there are two types of low-energy
elastic (hydrodynamic) excitations—phonons and phasons [9]. It is natural for one to ask
what piezoresistance properties would be expected in QCs. What characteristic feature could
follow from their symmetries alone and not from the details of atomic position and interatomic
interactions? We think it is worthwhile to propose a theoretical insight into it. This is the
purpose of this paper. We will explore the piezoresistance properties of three-dimensional
(3D) icosahedral QCs and all two-dimensional (2D) QCs with crystallographically forbidden
symmetries [10]. It is found that the piezoresistive behaviour of QCs is more complicated
than that of ordinary crystals because of the presence of the phason field. The number of
independent components of the piezoresistivity tensor and their matrix forms are determined
for 3D and 2D QCs with fivefold, eightfold, tenfold and twelvefold symmetries. All results
are given in section 3. Conclusions are given in section 4.

2. Piezoresistance effect in QCs

It is well known that the appearance of the ordinary phonon and additional phason degrees
of freedom in the hydrodynamics for QCs lead to two kinds of strain field, the phonon strain
Ei j = 1

2 (∂ j ui + ∂i u j) and the phason strain Wαi = ∂iwα as well as two kinds of stress field:
the phonon stress Ti j and the phason stress Hαi [11], where subscripts i, j, k, . . . are used
for coordinate components in the physical space, and subscripts α, β, γ, . . . for coordinate
components in the perpendicular space. Thus, in analogy with the case of conventional
crystals [12, 13] the piezoresistance effect can be represented as a change of the resistivity
tensor ρi j under the action of stresses Tmn and Hαn:

Ei = (ρ0
il + P(1)

ilmn Tmn + P(2)

ilαn Hαn)Jl = (ρ0
il + ρ

(1)

il + ρ
(2)

il )Jl, (1)

where E is the electric field intensity, J is the current density, ρ0
il is the resistivity tensor of a

QC in the absence of mechanical stresses, and ρ
(1)
il and ρ

(2)
il are the resistivity tensors induced

by phonon and phason stresses, respectively. Thus the piezoresistance properties of QCs are

described by the two tensors P(1)
ilmn and P(2)

ilαn . In the case of icosahedral QCs, however, the
piezoresistance properties can be characterized more conveniently by another two tensors �(1)

and �(2) related to P(1) and P(2) by

P(1)
ilmn = ρ0

ik�
(1)
klmn P(2)

ilαn = ρ0
ik�

(2)
klαn . (2)

Then equation (1) becomes

Ei = ρ0
ik(δkl + �

(1)
klmn Tmn + �

(2)
klαn Hαn)Jl . (3)

Here Π(1)(Π(1)) and Π(2)(P(2)) are the piezoresistivity tensors induced by the phonon stress
and the phason stress, respectively. Since in icosahedral QCs ρ0

ik = ρ0δkl , equation (3) has the
form

Ei = ρ0(δil + �
(1)
ilmn Tmn + �

(2)
ilαn Hαn)Jl . (4)

Alternatively, the equation which describes the piezoresistance effect in QCs may be written
in terms of the strains E pq and Wβq

Ei = ρ0
ik(δkl + m(1)

klpq E pq + m(2)
klβq Wβq)Jl, (5)

where m(1)
klpq and m(2)

klβq are the tensors of elastoresistive coefficients. From the generalized
Hooke’s law [11] it follows that the relations between m and Π are

m(1)
klpq = �

(1)
klmn Cmnpq + �

(2)
klαn Rpqαn

m(2)
klβq = �

(1)
klmn Rmnβq + �

(2)
klαn Kαnβq .

(6)
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Table 1. Characteristics of 235 symmetry. (Note: τ = 1
2 (1 +

√
5).)

235 E 12C5 12C2
5 20C3 15C2

	1 1 1 1 1 1
	3 3 τ 1 − τ 0 −1
	′

3 3 1 − τ τ 0 −1
	4 4 −1 −1 1 0
	5 5 0 0 −1 1

Here C, K and R are elastic tensors of phonon field, phason field and phonon–phasoncoupling,
respectively.

Since ρi j , Ti j and Ei j are all symmetric, in accordance with the symmetry of these tensors
we have

�
(1)
ilmn = �

(1)
limn = �

(1)
ilnm = �

(1)
linm , �

(2)
ilαn = �

(2)
liαn,

P(1)
ilmn = P(1)

limn = P(1)
ilnm = P(1)

linm , P(2)
ilαn = P(2)

liαn .
(7)

We can readily see that the number of the components of piezoresistivity tensor induced by the
phonon stress (�(1)

ilmn or P(1)
ilmn ) is 36, while the number of the piezoresistivity tensor induced by

the phason stress (�(2)

ilαn or P(2)

ilαn ) is 54 for 3D QCs and 36 for 2D QCs, respectively. However,
additional restrictions arise from the point-group symmetry inherent in the QC considered and
generally lead to a reduction in the number of independent components of the piezoresistivity
(or elastoresistivity) tensor. In the following section we will discuss this point in detail.

3. Independent components of the piezoresistivity tensor

In this section we determine the number of independent components of the piezoresistivity
tensor for all QCs. According to the higher-dimensional description of QCs a QC structure can
be generated by projecting a higher-dimensional lattice (V ) onto the physical space (VE) where
V = VE + VI with VI being the perpendicular space. Consequently, a vector in VE transforms
under the vector representation (	A) of the symmetry group of the structure considered,
whereas a vector in VI transforms under another irreducible representation (	B). Once the
transformation properties of the vectors are specified, the physical property tensor of any rank
can be determined by group representation theory. As an example, we consider the icosahedral
QCs with 235 symmetry. This point group has five irreducible representations (cf table 1),
one of which is one-dimensional (the identity representation), one four-dimensional, one five-
dimensional and two are two-dimensional, respectively. In this case, 	A = 	3 and 	B = 	′

3.
Therefore, the components �

(1)
ilmn transform under

(	3 × 	3)s × (	3 × 	3)s = (	1 + 	5) × (	1 + 	5)

= 2	1 + 	3 + 	′
3 + 2	4 + 4	5, (8)

where subscript s denotes the symmetric part of the direct product.
As is well known, the number of nonvanishing independent components of a physical

property tensor is just the number of the identity representations which are contained in the
direct product. From equation (8) it follows that there are two independent components of
�

(1)
ilmn and one independent component of �

(2)
ilαn. The transformation properties of �

(1)
ilmn (�(2)

ilαn)
follow directly from those for ρ

(1)
il (ρ(2)

il ) and Tmn (Hαn). If we find the precise components of
ρ

(1)

il (�(2)

ilαn) and Tmn (Hαn) that transform under the same constituent representations, we can
construct all the invariants formed by their combinations, and then establish the independent
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Table 2. Piezoresistance constants for 3D QCs. In this table the indices αn in the phason stress
Hαn are arranged in the order 11, 22, 33, 23, 31, 12, 32, 31, 21. �

(1)
44 = 1

2 (�
(1)
11 − �

(1)
12 ).

Point groups Piezoresistance constants

235, m3̄5̄ Π(1) =




�
(1)
11 �

(1)
12 �

(1)
12 0 0 0

�
(1)
12 �

(1)
11 �

(1)
12 0 0 0

�
(1)
12 �

(1)
12 �

(1)
11 0 0 0

0 0 0 �
(1)
44 0 0

0 0 0 0 �
(1)
44 0

0 0 0 0 0 �
(1)
44




2

Π(2) = �
(2)
111




1 1 1 0 0 0 0 1 0
−1 −1 1 0 0 0 0 −1 0
0 0 −2 0 0 0 0 0 0
0 0 0 0 0 −1 1 0 −1
1 −1 0 0 1 0 0 0 0
0 0 0 −1 0 −1 0 0 1




1

components �
(1)
ilmn (�(2)

ilαn). Using the same method given in [9], we find that ρ
(1)

11 + ρ
(1)

22 + ρ
(1)

33
and T11 + T22 + T33 transform under the same representation 	1 giving one invariant

(ρ
(1)

11 + ρ
(1)

22 + ρ
(1)

33 )(T11 + T22 + T33). (9)

Similarly, ( 1√
6
(ρ

(1)

11 + ρ
(1)

22 − 2ρ
(1)

33 ), 1√
2
(ρ

(1)

11 − ρ
(1)

22 ),
√

2ρ
(1)

12 ,
√

2ρ
(1)

31 ,
√

2ρ
(1)

23 ) and ( 1√
6
(T11 +

T22 − 2T33),
1√
2
(T11 − T22),

√
2T12,

√
2T31,

√
2T23) transform under the same representation

(	5) giving another invariant

(ρ
(1)

23 T23 + ρ
(1)

31 T31 + ρ
(1)

12 T12) − (ρ
(1)

11 T22 + ρ
(1)

22 T33 + ρ
(1)

11 T11). (10)

Thus, we obtain the corresponding nonvanishing components

�
(1)

1111 = �
(1)

2222 = �
(1)

3333, �
(1)

2323 = �
(1)

3131 = �
(1)

1212 = 1
2 (�

(1)

1111 − �
(1)

1122),

�
(1)
1122 = �

(1)
2211 = �

(1)
1133 = �

(1)
3311 = �

(1)
2233 = �

(1)
3322.

(11)

The piezoresistivity tensor for point group 235 can be also written in the matrix form

Π(1) =




�
(1)

11 �
(1)

12 �
(1)

12 0 0 0

�
(1)

12 �
(1)

11 �
(1)

12 0 0 0

�
(1)

12 �
(1)

12 �
(1)

11 0 0 0

0 0 0 �
(1)

11 0 0
0 0 0 0 �

(1)

11 0
0 0 0 0 0 �

(1)

11




2

(12)

where the subscript 2 stands for the number of independent components. The correspondences
between the index pairs and single indices in physical space are, as usual,

(i j)= 11 22 33 23 31 12
i = 1 2 3 4 5 6.

(13)

The same method can be used for determining the phasonic piezoresistivity tensor Π(2),
but it should be noted that the phason variable (w) transforms under another representation
(	′

3) and the components �
(2)

ilαn transform under

(	3 × 	3)s × (	3 × 	′
3) = (	1 + 	5) × (	4 + 	5)

= 	1 + 2	3 + 2	′
3 + 4	4 + 5	5. (14)
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Table 3. Piezoresistance constants for 2D QCs. In this table the indices αn in the phason stress
Hαn are arranged in the order 11, 22, 23, 12, 13, 21. P(1)

66 = 1
2 (P(1)

11 − P(1)
12 ).

Point groups Piezoresistance constants

5, 5̄, N,

N , N/m
(N = 8, 10, 12)

P(1) =




P(1)
11 P(1)

12 P(1)
13 0 0 P(1)

16

P(1)
12 P(1)

11 P(1)
13 0 0 −P(1)

16

P(1)
31 P(1)

31 P(1)
33 0 0 0

0 0 0 P(1)
44 P(1)

45 0

0 0 0 −P(1)
45 P(1)

44 0

−P(1)
16 P(1)

16 0 0 0 P(1)
66




8

5m, 52, 5̄m,

Nmm, N22,

Nm2, N/mmm
(N = 8, 10, 12)

P(1) =




P(1)
11 P(1)

12 P(1)
13 0 0 0

P(1)
12 P(1)

11 P(1)
13 0 0 0

P(1)
31 P(1)

31 P(1)
33 0 0 0

0 0 0 P(1)
44 0 0

0 0 0 0 P(1)
44 0

0 0 0 0 0 P(1)

66




6

5, 5̄ P(2) =




P(2)
111 P(2)

111 P(2)
123 P(2)

112 P(2)
113 −P(2)

112

−P(2)
111 −P(2)

111 −P(2)
123 −P(2)

112 −P(2)
113 P(2)

112

0 0 0 0 0 0

P(2)
411 −P(2)

411 0 P(2)
412 0 P(2)

412

−P(2)
412 P(2)

412 0 P(2)
411 0 P(2)

411

0 P(2)
112 0 −P(2)

111 P(2)
123 P(2)

111




6

5m, 52, 5̄m P(2) =




P(2)
111 P(2)

111 P(2)
123 0 0 0

−P(2)
111 −P(2)

111 −P(2)
123 0 0 0

0 0 0 0 0 0
P(2)

411 −P(2)
411 0 0 0 0

0 0 0 P(2)
411 0 P(2)

411

0 0 0 −P(2)
111 P(2)

123 P(2)
111




3

N, N , N/m
(N = 8, 10)

P(2) =




P(2)
111 P(2)

111 0 P(2)
112 0 −P(2)

112

−P(2)
111 −P(2)

111 0 −P(2)
112 0 P(2)

112

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

P(2)
112 P(2)

112 0 −P(2)
111 0 P(2)

111




2

Nmm, N22,

Nm2, N/mmm
(N = 8, 10)

P(2) =




P(2)
111 P(2)

111 0 0 0 0

−P(2)
111 −P(2)

111 0 0 0 0

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

0 0 0 −P(2)
111 0 P(2)

111




1

12, 12, 12/m,

12mm, 1222,

12m2, 12/mmm
P(2) = 0
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In this case ( 1√
6
(ρ

(2)

11 + ρ
(2)

22 − 2ρ
(2)

33 ), 1√
2
(ρ

(2)

11 − ρ
(2)

22 ),
√

2ρ
(2)

12 ,
√

2ρ
(2)

31 ,
√

2ρ
(2)

23 ) and

(H33,
1√
3
(H11 + H22 + H13),

1√
3
(H21− H12− H23),

1√
3
(H11 + H31− H22),

1√
3
(H32− H21− H12))

transform under the same representation (	5) giving one invariant

(ρ
(2)

11 + ρ
(2)

22 − 2ρ
(2)

33 )H33 + (ρ
(2)

11 − ρ
(2)

22 )(H11 + H22 + H13)

+ 2ρ
(2)
12 (H21 − H12 − H23) + 2ρ

(2)
31 (H11 + H31 − H22)

+ 2ρ
(2)

23 (H32 − H21 − H12). (15)

Then the corresponding nonvanishing components are

�
(2)

1111 = �
(2)

1122 = �
(2)

1133 = �
(2)

1113 = −�
(2)

2211 = −�
(2)

2222

= �
(2)

2233 = �
(2)

2213 = − 1
2�

(2)

3333 = −�
(2)

2312 = �
(2)

2332 = −�
(2)

2312

= �
(2)

3111 = −�
(2)

3122 = �
(2)

3131 = −�
(2)

1223 = −�
(2)

1212 = �
(2)

1221. (16)

The corresponding matrix form is

Π(2) = �
(2)

111




1 1 1 0 0 0 0 1 0
−1 −1 1 0 0 0 0 −1 0
0 0 −2 0 0 0 0 0 0
0 0 0 0 0 −1 1 0 −1
1 −1 0 0 1 0 0 0 0
0 0 0 −1 0 −1 0 0 1




1

(17)

where �
(2)

111 corresponds to �
(2)

1111 since the latter has only first two indices in physical space.
Using this method we can determine the number of independent components of

piezoresistivity tensor and their matrix forms for all other QCs. The results of 3D QCs and
2D QCs are given in tables 2 and 3, respectively.

4. Conclusion

In summary, we have investigated the piezoresistivity effect of QCs. It is found that the
piezoresistance properties of QCs are more complicated than those of ordinary crystals because
of the presence of the phason field. Several points can be noted:

(1) With regard to piezoresistivity tensor induced by the phonon stress, there are two classes
in 2D QCs. One class consists of the QCs with the point groups 5, 5̄, N , N and N/m

(N = 8, 10, 12), which have eight independent components P(1)
ilmn . Another class consists

of the QCs with the point groups 5m, 52, 5̄m, Nmm, N22, Nm2 and N/mmm (N = 8,
10, 12), which have six independent components P(1)

ilmn .

(2) With regard to the piezoresistivity tensor induced by the phason stress, there are five
classes in 2D QCs. The first class consists of the QCs with the point groups 5, 5̄, which
have six independent components P(2)

ilαn . The second class consists of the QCs with the
point group 5m, 52 and 5̄m, which have three independent components P(2)

ilαn . The third
class consists of the QCs with the point groups N , N , N/m (N = 8, 10), which have two
independent components P(2)

ilαn . The fourth class consists of the QCs with the point groups
Nmm, N22, Nm2 and N/mmm (N = 8, 10), which have one independent component
P(2)

ilαn . The fifth class consists of the dodecagonal QCs, which have no such components.

(3) 3D QCs with 235 and m3̄5̄ symmetries have the same piezoresistance properties.
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